Human-Computer Interaction Principles

From perpendicular angel knowledgebase
Revision as of 15:24, 7 January 2021 by Kirabug (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

These are principles for display design originally introduced by Christopher Wickens et al. in An Introduction to Human Factors Engineering and are listed in the Human-Computer Interaction article on Wikipedia.

The principles are divided into four categories. The bulk of the content below comes directly from Wikipedia.

Perceptual principles

  • Make displays legible (or audible). A display's legibility is critical and necessary for designing a usable display. If the characters or objects being displayed cannot be discernible, then the operator cannot effectively make use of them.
  • Avoid absolute judgment limits. Do not ask the user to determine the level of a variable on the basis of a single sensory variable (e.g. color, size, loudness). These sensory variables can contain many possible levels.
  • Top-down processing. Signals are likely perceived and interpreted in accordance with what is expected based on a user's experience. If a signal is presented contrary to the user's expectation, more physical evidence of that signal may need to be presented to assure that it is understood correctly.
  • Redundancy gain. If a signal is presented more than once, it is more likely that it will be understood correctly. This can be done by presenting the signal in alternative physical forms (e.g. color and shape, voice and print, etc.), as redundancy does not imply repetition. A traffic light is a good example of redundancy, as color and position are redundant.
  • Similarity causes confusion: Use distinguishable elements. Signals that appear to be similar will likely be confused. The ratio of similar features to different features causes signals to be similar. For example, A423B9 is more similar to A423B8 than 92 is to 93. Unnecessarily similar features should be removed and dissimilar features should be highlighted.

Mental Model Principles

  • Principle of pictorial realism. A display should look like the variable that it represents (e.g. high temperature on a thermometer shown as a higher vertical level). If there are multiple elements, they can be configured in a manner that looks like it would in the represented environment.
  • Principle of the moving part. Moving elements should move in a pattern and direction compatible with the user's mental model of how it actually moves in the system. For example, the moving element on an altimeter should move upward with increasing altitude.

Principles based on attention

  • Minimizing information access cost or interaction cost. When the user's attention is diverted from one location to another to access necessary information, there is an associated cost in time or effort. A display design should minimize this cost by allowing for frequently accessed sources to be located at the nearest possible position. However, adequate legibility should not be sacrificed to reduce this cost.
  • Proximity compatibility principle. Divided attention between two information sources may be necessary for the completion of one task. These sources must be mentally integrated and are defined to have close mental proximity. Information access costs should be low, which can be achieved in many ways (e.g. proximity, linkage by common colours, patterns, shapes, etc.). However, close display proximity can be harmful by causing too much clutter.
  • Principle of multiple resources. A user can more easily process information across different resources. For example, visual and auditory information can be presented simultaneously rather than presenting all visual or all auditory information.

Memory Principles

  • Replace memory with visual information: knowledge in the world. A user should not need to retain important information solely in working memory or retrieve it from long-term memory. A menu, checklist, or another display can aid the user by easing the use of their memory. However, the use of memory may sometimes benefit the user by eliminating the need to reference some type of knowledge in the world (e.g., an expert computer operator would rather use direct commands from memory than refer to a manual). The use of knowledge in a user's head and knowledge in the world must be balanced for an effective design.
  • Principle of predictive aiding. Proactive actions are usually more effective than reactive actions. A display should attempt to eliminate resource-demanding cognitive tasks and replace them with simpler perceptual tasks to reduce the use of the user's mental resources. This will allow the user to focus on current conditions, and to consider possible future conditions. An example of a predictive aid is a road sign displaying the distance to a certain destination.
  • Principle of consistency. Old habits from other displays will easily transfer to support processing of new displays if they are designed consistently. A user's long-term memory will trigger actions that are expected to be appropriate. A design must accept this fact and utilize consistency among different displays.